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The relaxor enigma — charge disorder and random

fields in ferroelectrics
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Angewandte Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany

Substitutional charge disorder giving rise to quenched electric random-fields (RF s) is probably
at the origin of the peculiar behavior of relaxor ferroelectrics, which are primarily characterized
by their strong frequency dispersion of the dielectric response and by an apparent lack of
macroscopic symmetry breaking at the phase transition. Spatial fluctuations of the RF s
correlate the dipolar fluctuations and give rise to polar nanoregions in the paraelectric regime
as has been evidenced by piezoresponse force microscopy (PFM) at the nanoscale. The
dimension of the order parameter decides upon whether the ferroelectric phase transition is
destroyed (e.g. in cubic PbMg1/3Nb2/3O3, PMN) or modified towards RF Ising model behavior
(e.g. in tetragonal Sr1−xBaxNb2O6, SBN, x ≈ 0.4). Frustrated interaction between the polar
nanoregions in cubic relaxors gives rise to cluster glass states as evidenced by strong pressure
dependence, typical dipolar slowing-down and theoretically treated within a spherical random
bond-RF model. On the other hand, freezing into a domain state takes place in uniaxial relaxors.
While at Tc non-classical critical behavior with critical exponents γ ≈ 1.8, β ≈ 0.1 and α ≈ 0 is
encountered in accordance with the RF Ising model, below Tc ≈ 350 K RF pinning of the walls of
frozen-in nanodomains gives rise to non-Debye dielectric response. It is relaxation- and
creep-like at radio and very low frequencies, respectively.
C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Relaxor ferroelectrics include a large group of solid solu-
tions, mostly oxides, with a perovskite or tungsten bronze
structure. In contrast to ordinary ferroelectrics (FE)
whose physical properties are quite adequately described
by the Landau-Ginzburg-Devonshire theory [1]. relaxors
possess the following main features: (i) a significant
frequency-dependence of the electric permittivity, (ii)
absence of both spontaneous polarization and structural
macroscopic symmetry breaking, (iii) FE-like response
arising after field cooling to low temperature [2].

Very high response coefficients and an enhanced
width of the high response regime around the “ordering”
temperature Tm, (“Curie range”) make relaxors popular
systems for applications as piezoelectric/electrostrictive
actuators and sensors (e.g. scanning probe microscopy,
ink jet printer, adaptive optics, micromotors, vibration
sensors/attenuators, Hubble telescope correction, . . .)
and as electro- or elasto-optic and photorefractive ele-
ments (segmented displays, modulators, image storage,
holographic data storage, . . .).

When reflecting on the occurrence of relaxor be-
havior in perovskites, there appear to be two essential
ingredients:

i. existence of lattice disorder,
ii. existence of polar nanoregions at temperatures much

higher than Tm.

The first ingredient can be taken for granted, since re-
laxor behavior in these materials does not occur in the
absence of disorder. The second ingredient is manifested
in many experimental observations common to all per-
ovskite relaxors, as will be discussed later.

The following physical picture has emerged for
relaxors and seems to be widely accepted. Chemical
substitution and lattice defects introduce extra charges or
dipolar entities in mixed ABO3 perovskites. At very high
temperatures, thermal fluctuations are so large that there
are no well-defined dipole moments. However, on cool-
ing, the presence of these dipolar entities manifests itself
as small polar nanoregions below the so-called Burns
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temperature, Td [3]. These regions grow as the correlation
length, rc, increases with decreasing T, and finally, two
different situations may arise. If the regions become large
enough (macrodomains) so as to percolate (or permeate)
the whole sample, then the sample will undergo a static,
cooperative FE phase transition at Tc. On the other hand,
if the nanoregions grow with decreasing T, but do not
become large enough or percolate the sample, then they
will ultimately exhibit a dynamic slowing down of their
fluctuations at T ≤ Tm leading to an isotropic relaxor
state with random orientation of the polar domains.

A matter of dispute is still the physical significance and
the very origin of the Burns temperature. Very probably
it is not a usual phase transitions temperature. It might
rather be considered as a so-called Griffiths temperature,
which signifies the onset of weak singularities in a diluted
ferroic system below the transition temperature of the
undiluted system [4, 5]. However, the sharp onset of weak
singularities is not at all confirmed in relaxor systems. We
rather believe that the temperature regime in which the
domains grow in size is continuous and merely determined
by the correlating forces due to the underlying quenched
random field (RF) distribution [6] as will be discussed in
the next chapter.

2. Polar nanoregions
While many researchers believe that the above mentioned
ingredients for relaxor behavior to appear are more or less
independent, we have argued [6] that the primary cause
of relaxor behavior is the charge disorder, which is at the
origin of the occurrence of polar nanoregions and their
fluctuations within the highly polarizable lattice [7]. In
order to describe disordered systems and to explore their
basic thermodynamic behavior simple spin models are
frequently used. The model Hamiltonian

H = −
∑

〈i j〉
JijSiSj−

∑

i

hiSi (1)

accounts for random interactions (or random bonds, RBs),
Jij, between nearest neighbor spins Si and Sj, and for
quenched random fields (RFs), hi acting on the spins
Si. While the RBs are at the origin of spin glass behav-
ior [8], RFs may give rise to disordered domain states
provided that the order parameter has continuous sym-
metry [9]. This is easily shown with the help of energy
arguments considering both the bulk energy decrease by
fluctuations of the RFs and the energy increase due to
the formation of domain walls. A remarkable exception,
which does not necessarily lead to a disordered ground
state, is the random-field Ising model (RFIM) system in d
= 3 dimensions. Owing to its discontinuous spin symme-
try, atomically thin domain walls are expected, which are
energetically unfavorable. For this reason the 3d RFIM

is expected to exhibit long-range order below the criti-
cal temperature Tc. However, as a tribute to the RFs new
criticality due to a T = 0 fixed point [10] and strongly
decelerated critical dynamics are encountered [11].

Unfortunately, the original idea [9] to realize a ferro-
magnetic RFIM by doping with random magnetic ions
fails. Their spin dynamics always couples to that of
the host system such that their dipolar fields cannot
be regarded as quenched ones. Regrettably, there is no
chance to dope a ferromagnet with magnetic monopoles,
which might readily provide quenched local magnetic
fields. Bearing this in mind, the situation should be much
more favorable for the electric counterparts to ferromag-
nets, where electric charges may take the role of field-
generating monopoles. Indeed, in FE systems electric
charge disorder should easily give rise to quenched RFs.
This was proposed previously in order to understand the
peculiar relaxor behavior of the archetypical solid solu-
tion PbMg1/3Nb2/3O3 (PMN) [12]. Unfortunately, apart
from the expected extreme slowing-down of the RFIM
[11], which is closely related to the relaxor-typical huge
polydispersivity [2, 12], no RFIM criticality was ob-
served. This is a consequence of the high pseudo-spin
dimension of the polarization order parameter, P. It has
eight easy 〈111〉 directions in the cubic unit cell and thus
quasi-continuous symmetry [6]. Clearly the search for an
appropriate uniaxial FE (one-component order parame-
ter ±Pz, i.e. n = 2) with charge disorder seems advis-
able in order to materialize a proper ferroic 3d RFIM
system. Only recently [13] the uniaxial relaxor crystal
Sr0.61−xCexBa0.39Nb2O6 (SBN61:Ce, 0 ≤ x < 0.02) has
been found to fulfil the conditions of a ferroic RFIM (see
Chap. 4).

Evidence for the existence of polar nanoregions well
above Tm has come from high resolution TEM which also
showed the growth of these regions with decreasing T
[14]. The evidence is also prominently reflected in certain
properties of these systems. To provide the context, recall
that for relaxors in the absence of electrical bias there are
random + and − fluctuations of the dipolar polarization
so that

∑
Pd = 0, i.e., there is no measurable remanent

polarization. However,
∑

P2
d �= 0, and we then expect

the existence of these polar regions to be manifested in
properties which depend on P2, e.g., eletrostriction which
is reflected in the thermal expansion and the quadratic
electro-optic effect, which is reflected in the refractive
index, or birefringence. Indeed, both of these properties
have provided quantitative measures of this polarization
for the relaxors. The manifestation of the presence of po-
lar nanodomains in strong relaxors in terms of the electro-
optic effect was first demonstrated by Burns and Dacol
[3] in measurements of the T dependence of the refrac-
tive index, n. For a normal ABO3 FE crystal, starting in
the high-temperature PE phase, n decreases linearly with
decreasing T down to Td at which point n deviates from
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linearity. The deviation is proportional to the square of
the polarization and increases as the polarization evolves
with decreasing T. If the FE transition is of first order,
then there is a discontinuity in n at Tc followed by the
expected deviation. This qualitative picture is representa-
tive of the behavior of many perovskite FEs. However, in
the case of relaxors, Burns and Dacol observed deviations
from linear n(T) well above Tm. These deviations can be
quantitatively described by the relationship [3, 14]

�n = (�n11 + �n12)

3
=

(
n3

0

2

) [
(g33 + 2g13)

3

]
P2

d

(2)
where the �n’s are the changes in the parallel and perpen-
dicular components of n, no is the index in the absence of
polarization (Pd), and the gij are the quadratic electro-optic
coefficients. The temperature at the onset of the deviation
from linear n(T), Td = 620 K in the case of PMN, is the
Burns temperature. Above this temperature, thermal fluc-
tuations are so large that there are no well-defined dipolar
regions or clusters. These regions nucleate at Td by taking
advantage of the statistical fluctuations of the RFs and
grow on lowering T. Diffuse scattering and HRTEM re-
sults indicate that in PMN these regions grow from 2 to 3
nm in size above 400 K to ≈10 nm at ≈160 K (Tm ≈ 230
K) [2]. Thus, they are much smaller than typical FE do-
mains, which are orders of magnitude larger. The small
size of these nanoregions explains why they cannot eas-
ily be detected by diffraction measurements and the bulk
structures of PMN and most strong mixed ABO3 relaxors
remain cubic to both x-ray and neutron probes and to long
wavelength photons down to lowest temperatures.

Evidence for the existence of polar nanoregions well
above Tm in relaxors has also been deduced from the T
dependence of the susceptibility. As noted earlier, it is
well established that χ ′(T) in the high temperature, cu-
bic PE phase of ABO3 FEs follows the Curie–Weiss law
χ ′ = C/(T−θ), where θ is the Curie–Weiss temperature,
over a wide temperature range. However, χ ′(T) of relaxors
shows large deviations from this law for T > Tm. Devia-
tion from Curie–Weiss response sets in upon nucleation
of the polar nanoregions at Td, and this deviation grows
with decreasing T as the size of the regions and their
correlations increase. It can be described by a modified
Curie-Weiss law [15]

χ = C[1 − q(T )]

[T − θ(1 − q(T ))]
, (3)

which relates χ(T) below Tf to the local “spin glass” order
parameter q, which is a function of temperature [16, 17].
While q→0 above at T > Td, it increases with decreas-
ing temperature below Td because of increased dipolar
correlations [16]. In such a case the local order parameter
due to correlations between neighboring polar domains of

polarization Pi and Pj is q = 〈Pi Pj〉1/2. The “universal re-
laxor polarization” regime of relaxors, where an unusual
T dependence of the susceptibility, χ ′ = C/(T−T0)2, is ob-
served [17], is essentially the regime where the Edwards-
Anderson order parameter q reveals a marked temperature
dependence.

3. Cubic relaxors
The archetypical perovskite-like lead-containing relaxor
Pb(Mg1/3Nb2/3)O3 (PMN, ABO3 space group Pm3̄m)
system has been known for fifty years [12]. As-grown
PMN single crystals exhibit excellent crytalline properties
with small mosaic spread (ω ≤ 0.01◦). However, on the
nanometer scale there is a significant degree of chemical
and structural disorder [18]. Fig. 1 shows a random distri-
bution of B site ions on an enlarged unit cell. Moreover,
atoms on the B sites are occasionally short-range ordered
within quenched chemical nanodomains withFm3̄m sym-
metry [19]. The polar order parameter of PMN is directed
along one of the eight rhombohedral 〈111〉 directions.
Hence, an eight state Potts model might be applicable
to this case. Fig. 2 shows the evolution of domains as
simulated in a two-dimensional 4-state Potts model with
respective planar RFs as a function of temperature [20].
At high temperatures, kBT/J = 10, it is seen that the do-
mains image the RF distribution, while on decreasing the
temperature down to kBT/J = 0.2 the domains become
coarse grained and merely image the local fluctuations
of the RF distribution. An appropriate means to evidence
the nanoregions even when being dynamic, i.e. above any

Figure 1 Random ionic distribution in PMN (Pb2+ = hatched circles, O2−
= small solid circles, Nb5+ = large solid circles, Mg2+ = open circles).
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Figure 2 Domain distribution with polarizations ±Px and ±Py as indicated
by different gray tones in a 4-state random field Potts model at temperatures
kBT/J = 10 (a), 1 (b), 0.8 (c), 0.6 (d), 0.3 (e) and 0.2 (f) (from [20]).

transition or freezing temperature, is the optical second-
harmonic generation, SHG, as evidenced for both PMN
[21] and SBN [22]. In both cases the SHG intensity starts
to grow well above the transition temperatures.

Since the order parameter of PMN is close to be con-
tinuous, an equilibrium phase transition into a long-range
ordered FE phase is excluded [9]. However, Blinc et al.
[23] developed another route towards an ordered low-T
phase. Based on the existence of polar nanoregions and
their above described correlations, q = 〈Pi Pj〉1/2 [16],
they proposed a spherical random bond RF (SRBRF) the-
ory. Here polar clusters of any size fulfilling the spherical
constraint are considered as randomly interacting “su-
perspins” which undergo a transition into a cluster glass
state. Theory has been solved for infinitely ranged inter-
actions in mean-field approximation. Experimental tests
by means of 93Nb NMR reveal that the RFs are Gaussian
distributed and that the Edwards-Anderson glass order pa-
rameter is finite below T ≈ 300 K. Hence, no equilibrium
static glassy freezing can be expected. Nevertheless, the
preponderance of the random bonds with respect to the
RFs clearly favors a glassy scenario which can be tested
by measuring the (truncated) divergence of the nonlinear

susceptibility, χ3. More rigorously [24], the anisotropy
parameter a3 = χ3/χ

4
1 has to maximize when approach-

ing Tg on cooling, where χ1 denotes the linear susceptibil-
ity. This has, indeed, been observed on both PMN and the
related relaxor lead lanthanum zirconate-titanate (PLZT)
[24].

A remark concerning the magnitude of the RFs seems
in order. We are convinced that the primary function of
the local RFs due to built-in charge disorder is to form
energetically favored nanoregions [6]. These interact in a
glass-like manner and form a spherical “superspin” glass
[16, 23]. The glass transition, secondly, becomes smeared
owing to effective RFs, hi entering the superspin Hamilto-
nian, Equation 1. Since cluster spins containing N atomic
spins experience only the fluctuations of the local RFs,
the magnitudes of the effective RFs are reduced by fac-
tors 1/N1/2. This is why only weak smearing effects are
observed. It should finally be remarked that the SRBRF
theory has by far not yet generally been accepted. Still the
origin of the nanoregions and their transition into a glassy
state are disputed and not yet understood from a rigorous
theoretical point of view. Clearly, the RF model simpli-
fies the situation, since it neglects the possible relevance
of bond disorder and the randomness of the quadrupo-
lar degrees of freedom, which may give rise to structural
glass behavior.

4. Uniaxial relaxors
In contrast to the cubic family related to PMN the
polarization of the strontium-barium niobate family,
SrxBa1−xNb2O6, (SBN), is a single component vector di-
rected along the tetragonal c direction, which drives the
symmetry point group from paraelectric parent 4/mmm
to polar 4 mm at the phase transition into the low-T long-
range-ordered polar phase as determined by X-ray diffrac-
tion [25]. Since SBN is tetragonal on the average, it be-
longs to the Ising model universality class rather than to
the Heisenberg one as proposed for PMN-like system [6].
Assuming the presence of quenched random fields (RFs),
available theory predicts the existence of a phase tran-
sition into long-range order within the RF Ising model
(RFIM) universality class [9] preceded by giant critical
slowing-down above Tc [11]. Only recently the SBN sys-
tem has been found to fulfil the above necessary condition
[13] and the ferroic RFIM seems to be materialized at last
[26].

When explaining the unusual relaxor behavior, again
the appearance of fluctuating polar precursor clusters at
temperatures T > Tc has to be considered as the primary
signature of the polar RFIM [2, 3, 6]. Acting as precur-
sors of the spontaneous polarization, which occurs below
Tc, they have been evidenced in various zero-field cool-
ing (ZFC) experiments comprising linear birefringence
[27], linear susceptibility [28], dynamic light scattering
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[29] and Brillouin scattering [30]. After freezing into a
metastable domain state at T < Tc the clusters were also
directly observed with the help of high resolution piezore-
sponse force microscopy, PFM [31] (Fig. 3).

One of the major achievements provided by the discov-
ery of the FE RFIM is the possibility to study the complete
set of critical exponents on a ferroic system for the first
time after their prediction [9, 10]. While most of the ex-
ponents compare well with predictions from theory and
simulations [32], a remarkable deviation is found for the
order parameter exponent, where β = 0.14 as determined
by 93Nb nuclear resonance [33] (Fig. 4) clearly deviates
from the prediction β ≈ 0 [32]. However, our value comes
close to that observed recently on the standard RFIM sys-
tem, the dilute uniaxial antiferromagnet Fe1−xZnxF2, x =
0.15, in an external magnetic field [34]. Further, the most
disputed value, namely the specific heat exponent α ≈ 0
[35] clearly complies with the logarithmic divergence as

Figure 3 Spatial distribution of the ZFC surface polarization of SBN61:Ce
(x = 0.01) (left-hand inset). Black and white areas refer to ±Pz, respec-
tively. One Pz domain (highlighted) is shown in the right-hand inset. The
distribution function of domain areas A (solid circles) fits to the power law
N (A) = N0 A−δ exp(−A/A∞) with exponential cutoff and δ = 1.5 (solid
line) (from [31]).
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Figure 4 Order parameter of SBN as measured by NMR techniques dis-
playing criticality with an exponent β = 0.16 (from [33]).

found on Fe1−xZnxF2 [10], which still lacks theoretical
confirmation.

5. Domain dynamics in uniaxial relaxors
Domains in FE crystals are well-known to have a consid-
erable influence on the value of their complex dielectric
susceptibility, χ∗ = χ ′− iχ ′′, and related quantities [36].
Owing to its mesoscopic character the domain wall sus-
ceptibility strongly reflects the structural properties of the
crystal lattice. This is most spectacular in crystals with
inherent disorder, where the domain walls are subject of
stochastic pinning forces and χ∗ is highly polydispersive
due to a wide distribution of Debye-type response spectra
[37, 38],

χ∗(ω) ∝ ln(1/ωτ0)2/


(1 + iωτ )
, (4)

where τ 0 and τ (with τ > τ 0), ω and 
 ≈ 0.8 (in d = 3) are
relaxation times, the angular frequency and a roughness
exponent, respectively.

More generally, the dynamic behavior of domain walls
in random media under the influence of a periodic exter-
nal field gives rise to hysteresis cycles of different shape
depending on various external parameters. According to
recent theory [39] on disordered ferroic (ferromagnetic
or FE) materials, the polarization, P, is expected to dis-
play a number of different features as a function of T,
frequency, f = ω/2π , and probing ac field amplitude,
E0. They are described by a series of dynamical tran-
sitions between different “phases”, whose order parame-
ter Q = (ω/2π)

∮
Pdt reflects the shape of the P vs. E

loop being either zero or non-zero. When increasing the
ac amplitude, E0, the polarization displays four regimes.
First, at very low fields, E0 < Eω, only “relaxation” with
Q = 0, but no macroscopic motion of the walls occurs
at finite frequencies, f > 0. Second, within the range Eω

< E0 < Et1, a thermally activated drift motion (“creep”)
is expected, while above the depinning threshold Et1 the
“sliding” regime is encountered within Et1 < E0 < Et2. In
both regimes Q �= 0 is encountered. Finally, for E0 > Et2 a
complete reversal of the polarization (“switching”) occurs
in the whole sample in each half of the period, τ = 1/f,
hence, Q = 0. It should be noticed that all transition fields,
Eω, Et1 and Et2, are expected to depend strongly on both
T and f [39].

We have shown [40] that two different non-Debye
responses corresponding to the field regions E0 < Eω

(“relaxation”) and Eω < E0 < Et1 (“creep”) occur
in the low-f dispersion of the uniaxial relaxor crystal
Sr0.61−xCexBa0.39Nb2O6 (SBN:Ce, x = 0.0066) in the
vicinity of its FE transition temperature, Tc = 320 K. It
shows both characteristics in adjacent frequency regimes.
While the well-known relaxational ln(1/f) characteristic
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of relaxing domain wall segments in a weak random field
[38] applies to “high” frequencies, f > 100 Hz, an alterna-
tive 1/f β dependence is observed in the “low”-f regime,
f < 1 Hz. In order to understand the latter behavior, we
introduce polydispersivity via a broad distribution of wall
mobilities, µw, which describe the viscous motion of the
walls in the creep regime, where they overcome a large
number of potential walls due to a high density of pinning
defects. As a characteristic of irreversibility the walls stop
when switching off the field. Within this concept the rapid
individual Debye-type relaxation processes are averaged
out on the long-time scale of a creep experiment. (1/f)β be-
havior at low frequencies has recently also been reported
on the relaxor-type crystal PbFe1/2Nb1/2O3 [41].

Dielectric response data were taken on a Czochralski-
grown very pure crystal of SBN:Ce (size 0.5 × 5 × 5
mm3) with probing electric-field amplitudes of 200 V/m
applied along the polar c axis. A wide frequency range,
10−5 < f < 106 Hz, was supplied by a Solartron 1260
impedance analyzer with a 1296 dielectric interface. Dif-
ferent temperatures were chosen both below and above Tc

and stabilized to within ±0.01 K. Fig. 5 shows represen-
tative data of χ ′ (curve 1) and χ ′′ vs. f (curve 2) taken at T
= 294 K. They illustrate the main features of the dielec-
tric dispersion of zero-field-cooled (ZFC) SBN:Ce: (i) the
dielectric response strongly increases below fmin ≈ 25 Hz
(marked by the dotted line); (ii) neither saturation of χ ′
nor a peak of χ ′′ are observed in the infra-low-frequency
limit, where (iii) the magnitude of χ ′′ exceeds that of χ ′
by one order of magnitude; (iv) a Cole-Cole-type plot of
χ ′′ vs. χ ′ is characterized by a positive curvature at fre-
quencies f<fmin (Fig. 5; inset), which is opposite to the
conventional Debye-type one; (v) at higher frequencies,
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Figure 5 Dielectric spectra of χ ′ and χ ′′ vs. f of unpoled (curves 1 and 2)
and poled (curves 1′ and 2′) SBN:Ce taken at T = 294 K. Solid lines are
guides to the eye and the vertical dotted line separates different response
regimes. A piezoelectric anomaly at f = 0.5 MHz is marked by a double
arrow. The inset shows χ ′′ vs. χ ′ (from [40]).

f > fmin, χ ′′ increases again in a power-law-like fashion
(straight line in a log-log presentation), while χ ′ changes
its curvature and gently bends down.

The dominating domain-wall nature of the response is
evidenced by its drastic reduction when poling the sam-
ple with E = 350 kV/m from above Tc into a near-single
domain state as shown by the curves 1′ and 2′ in Fig. 5. De-
spite its decrease by two orders of magnitude χ ′′ reveals,
again, a symmetric increase on both sides of fmin ≈ 65
Hz (dotted line), which becomes power-law-like in the
asymptotic low- and high-f regimes, respectively. This ap-
plies also to χ ′ (curve 1′) after subtracting a background
corresponding to the minimum at f = 65 Hz. Interestingly,
a sharp piezoelectric resonance of both χ ′ and χ ′′ is ob-
served at fmin ≈ 0.5 MHz after poling. This is typical of the
near-single domain state, which activates a piezoelectric
resonance.

The high-f response of both the ZFC and the FC states
confirms many of the characteristics predicted by Equa-
tion 4. Inspection shows that χ ′ decreases linearly on a
linear-log scale prior to the steeper decrease at f > 104 Hz,
while χ ′′ obeys linearity on a log-log scale. Clearly, the ω

prefactor strongly suppresses χ ′′ close to fmin when com-
pared with χ ′. Upon increasing f the same factor deter-
mines the positive curvature of χ ′′ despite the competing
In(l/f) contribution (curve 2′ in Fig. 5). Simultaneously,
χ ′ is bent down in a dispersion step-like fashion.

While the high-frequency dispersion regime is at-
tributed to polarization processes due to the reversible
motion of domain-wall segments experiencing restoring
forces, viz., relaxation, the low-frequency response is due
to the irreversible viscous motion of domain-walls. They
experience memory-erasing friction by averaging over
numerous pinning centers in a creep process. The latter
type of motion becomes possible for at least two reasons:
screening of depolarization fields by free charges in the
bulk or at the surface and/or pinning of the domain-walls
at quenched random fields, which is believed to be due to
quenched charge disorder in the special case of SBN:Ce
[13, 40].

Dielectric domain response under the action of an ex-
ternal electric field is readily modeled by considering the
average polarization, P(t) = (2Ps/D) x (t), of a regular
stripe domain pattern of up and down polarized regions
carrying spontaneous polarization, ±Ps, and having an
average width D. It arises from a sideways motion of
walls perpendicular to the field direction by a distance x.
Starting with P(0) = 0 at x(0) = 0, the favorable domains
enhance their total width by an amount 2x until reaching
(in principle) the limit P = Ps for x → D/2. By assuming
viscous motion of the walls one obtains the rate equation

Ṗ(t) =
(

2Ps

D

)
µw E(t), (5)
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where the wall velocity ẋ(t) = µw E(t) involves the wall
mobility µw and the driving field E(t). Assuming constant
mobility at sufficiently weak fields and disregarding the
depinning threshold one finds

P(t) =
[

2µw Ps

iωε0 D
+ χ∞

]
ε0 E0 exp(iωt). (6)

under a harmonic field, E(t) = E0exp(iωt). In Equation 6
the second term refers to “instantaneous” response pro-
cesses due to reversible domain-wall rearrangements oc-
curring on shorter-time scales (see above).

The above relations are expected to hold in the limit
of small displacements x, before the walls are stopped
either by depolarizing fields (in conventional FEs) or by
new domain conformations under the constraint of strong
random fields (in disordered FEs). Weak periodic fields
thus probe a linear ac susceptibility

χ∗
w(ω) = χ∞

(
1 + 1

iωτw

)
, (7)

withχ∞/τw = (2µw Ps/ε0 D). The “relaxation” time τw

denotes the time in which the interface contribution to the
polarization equals that achieved instantaneously, �P =
ε0χ∞E .

Since the electric fields used in our experiments (E0

= 200 V/m) are well below the coercive field, Ec ≈ 150
kV/m, we have to account for the nonlinearity of v vs E
in the creep regime, where thermal excitation enables vis-
cous motion below the depinning threshold Ecrit ≈ Ec. Ap-
proximating this regime roughly by a power law v ∝ Eδ ,
δ>2, Equation 7 may be modified phenomenologically
by introducing a Cole-Davidson-type exponent β < 1,

χ∗
w(ω) = χ∞

[
1 + 1

(iωτeff)β

]
, (8)

similarly as used in the case of polydispersive Debye-type
relaxation [42]. Here τ eff denotes an effective relaxation
time.

It has to be remarked that our approach neglects the
hysteretic properties of the ac susceptibility, which are
not contained in our adiabatic approach, Equation 6. This
deficiency has been overcome in a recent approach based
on a statistical model [43], where Equation 8 was de-
duced from the periodic motion of the domain walls in a
randomly pinning medium on the basis of the quenched
Edwards-Wilkinson equation. A similar result was re-
cently obtained within a Rayleigh loop approach [44].

Decomposition of Equation 8 yields

χ ′(ω) = χ∞[1 + cos(βπ/2)/(ωτeff)
β] and

χ ′′(ω) = χ∞ sin(βπ/2)/(ωτeff)
β (9)
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Figure 6 Dielectric spectra of χ ′−χ ′∞ (open circles), where χ ′∞, = 1820,
and χ ′′ (solid circles) vs. f of poled SBN:Ce taken at T = 294 K. The solid
line is a best fit to Equation 6 and Equation 7 with β = 0.67 (from [45]).

such that

χ ′′/(χ ′ − χ∞) = tan(βπ/2). (10)

The power law-type spectral dependencies of χ ′ and χ ′′
are well supported by our experiments. While the unpoled
sample exhibits an exponent β ≈ 0.2 (not shown), i.e.
large polydispersivity, the poled sample yields β ≈ 0.67
for both components of χ∗ (Fig. 6) [45]. Obviously the
polydispersivity is largely suppressed at low domain wall
densities. This seems to show that polydispersivity is less
affected by the nonlinearity in the creep regime, v ∝ Eδ

with 0 < δ < 1 in first approximation, than by the mutual
wall interactions in the nanodomain regime [31]. Very sat-
isfactorily, also the Cole-Cole plot, Equation 10, which is
another independent test of the ansatz, Equation 8, reveals
a very similar exponent, β ≈ 0.69.

It should be noticed that the monodispersive relation,
Equation 7, satisfies the Kramers-Kronig relationships,
since χ ′′∝1/ω is a purely conductive contribution due to
ohmic-like domain wall sliding and χ ′ = χ ′∞ is constant.
This is, however, no longer satisfied for β < 1, Equation 8.
Hence, the spectral features displayed in Fig. 6 must nec-
essarily change at very low frequencies. Here we conjec-
ture - in accordance with the theory of dynamic phase
transitions in random media [39] – that monodispersivity,
i.e. the sliding regime, should be attained asymptotically
when approaching the static limit. This has recently been
confirmed on the quantum-ferroelectric relaxor SrTi18O3

in its domain state below Tc = 25 K [46].

6. Conclusion
The enigma of relaxor ferroelectrics seems to come close
to be deciphered—50 years after the discovery of this re-
markable material class [12]. Based on a vast amount of
experimental and theoretical evidence it could be shown
that the inherent charge disorder and its quenched random
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electric field distribution must be at the very origin of re-
laxor behavior. The primary action of RFs is their correlat-
ing force onto the order parameter, which stabilizes polar
nanoregions against thermal fluctuations [20]. This has
been evidenced very clearly by high resolution PFM both
on the uniaxial relaxor SBN [31] and, very recently, also
on the cubic relaxor-like compound, PMN0.8-PT0.2 [47].

However, since the ferroelectric phase transition in
cubic relaxors like PMN is necessarily destroyed by
arbitrarily weak RFs [9], random interactions between
the different constituents of the solid solutions become
relevant in these compounds. That is why cluster
glassy scenarios are probably most appropriate for their
description near to and below the freezing temperature
[16, 23]. More research is needed to clarify the applicable
model(s). The situation is much clearer in uniaxial
relaxors like SBN, which is widely accepted to represent
the first ferroic materialization of the 3d random-field
Ising model [26]. Despite the clarity of this model and
its consequences, future research is yet needed, e.g.,
for understanding details of the critical behavior when
comparing experimental and theoretical results.
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